Example 1.2.6 For a power $x^{n}, n \in \mathbb{N}$ we have, by the Product Rule,

$$
\lim _{x \rightarrow a} x^{n}=\left(\lim _{x \rightarrow a} x\right)^{n}=a^{n}
$$

For any polynomial $p(x)=c_{n} x^{n}+c_{n-1} x^{n-1}+\ldots+c_{1} x+c_{0}$, we have, by the Sum Rule,

$$
\lim _{x \rightarrow a} p(x)=\sum_{i=0}^{n} c_{i} \lim _{x \rightarrow a} x^{i}=\sum_{i=0}^{n} c_{i} a^{i}=p(a) .
$$

This says: The limit of a polynomial at a point is the value of the polynomial at that point.

Example 1.2.7 A rational function is the quotient of polynomials, so $r(x)$ is a rational function if, and only if, it can be written as $p(x) / q(x)$ for some polynomials $p(x)$ and $q(x)$. Then

$$
\lim _{x \rightarrow a} r(x)=\lim _{x \rightarrow a} \frac{p(x)}{q(x)}=\frac{\lim _{x \rightarrow a} p(x)}{\lim _{x \rightarrow a} q(x)}
$$

by the quotient rule, provided $\lim _{x \rightarrow a} q(x)=q(a)$ is non-zero.
Thus, since the limits of these polynomials equal their values at the limit point,

$$
\lim _{x \rightarrow a} r(x)=\frac{p(a)}{q(a)}=r(a) .
$$

This says The limit of a rational function at a point is the value of the rational function at that point, provided that value is defined.

Example 1.2.8 As particular examples we deduce

$$
\lim _{x \rightarrow 2}(x+3)=2+3=5
$$

and

$$
\lim _{x \rightarrow 2}\left(x^{2}+2 x+2\right)=4+4+2=10 .
$$

Then, since $5 \neq 0$, we can use the Quotient Rule to deduce,

$$
\lim _{x \rightarrow 2} \frac{x^{2}+2 x+2}{x+3}=\frac{\lim _{x \rightarrow 2}\left(x^{2}+2 x+2\right)}{\lim _{x \rightarrow 2}(x+3)}=\frac{10}{5}=2,
$$

as has been proved earlier by verifying the $\varepsilon-\delta$ definition.

Note 1 We can not use the Quotient Rule to calculate

$$
\lim _{x \rightarrow 1} \frac{x^{2}-1}{x^{2}-x}
$$

This is because $\lim _{x \rightarrow 1} q(x)=\lim _{x \rightarrow 1}\left(x^{2}-x\right)=0$, and so the necessary conditions of the Theorem 1.2.5 are not satisfied.

Note 2 The Rules for Limits also hold if $x \rightarrow a$ is replaced by either of the one-sided limits $x \rightarrow a+, x \rightarrow a$ - or limits at infinity $x \rightarrow+\infty$ or $x \rightarrow-\infty$. It would be useful for the student to modify the proof I have given to show that it holds in these cases.

Recalling $\lim _{x \rightarrow+\infty} 1 / x=0$, proved by verifying the definition, means that by the Product Rule for limits at infinity

$$
\lim _{x \rightarrow+\infty} \frac{1}{x^{n}}=\left(\lim _{x \rightarrow+\infty} \frac{1}{x}\right)^{n}=0
$$

for all $n \geq 1$.
This simple result has applications as in the following.

Example 1.2.9

$$
\lim _{x \rightarrow+\infty} \frac{4 x^{2}+2}{2 x^{2}+4 x}=2 .
$$

Solution Divide top and bottom by the largest power of x, namely x^{2} to get

$$
\lim _{x \rightarrow+\infty} \frac{4 x^{2}+2}{2 x^{2}+4 x}=\lim _{x \rightarrow+\infty} \frac{4+2 / x^{2}}{2+4 / x}=\frac{\lim _{x \rightarrow+\infty}\left(4+2 / x^{2}\right)}{\lim _{x \rightarrow+\infty}(2+4 / x)},
$$

by the Quotient Rule, allowable since both limit top and bottom both exist and the bottom one is non-zero. Thus

$$
\lim _{x \rightarrow+\infty} \frac{4 x^{2}+2}{2 x^{2}+4 x}=\frac{\lim _{x \rightarrow+\infty}\left(4+2 / x^{2}\right)}{\lim _{x \rightarrow+\infty}(2+4 / x)}=\frac{4}{2}=2
$$

Note We cannot say

$$
\lim _{x \rightarrow+\infty} \frac{4 x^{2}+2}{2 x^{2}+4 x}=\frac{\lim _{x \rightarrow+\infty}\left(4 x^{2}+2\right)}{\lim _{x \rightarrow+\infty}\left(2 x^{2}+4 x\right)},
$$

because neither of the limits on the right hand side exist.

Theorem 1.2.10 Sandwich Rule:

Suppose that f, g and h are three functions such that

$$
h(x) \leq f(x) \leq g(x)
$$

for all x in some deleted neighbourhood of a.
If $\lim _{x \rightarrow a} h(x)=L$ and $\lim _{x \rightarrow a} g(x)=L$ then $\lim _{x \rightarrow a} f(x)=L$.

Proof By the assumption in the Theorem there exists $\delta_{0}>0$ such that if $0<|x-a|<\delta_{0}$ then $h(x) \leq f(x) \leq g(x)$.
Let $\varepsilon>0$ be given.
From the definition of $\lim _{x \rightarrow a} h(x)=L$ there exists $\delta_{1}>0$ such that

$$
\begin{aligned}
0<|x-a|<\delta_{1} & \Longrightarrow \quad|h(x)-L|<\varepsilon \\
& \Longrightarrow \quad L-\varepsilon<h(x)<L+\varepsilon \\
& \Longrightarrow \quad L-\varepsilon<h(x) .
\end{aligned}
$$

From the definition of $\lim _{x \rightarrow a} g(x)=L$ there exists $\delta_{2}>0$ such that

$$
\begin{aligned}
0<|x-a|<\delta_{2} & \Longrightarrow|g(x)-L|<\varepsilon \\
& \Longrightarrow L-\varepsilon<g(x)<L+\varepsilon \\
& \Longrightarrow g(x)<L+\varepsilon
\end{aligned}
$$

Let $\delta=\min \left(\delta_{0}, \delta_{1}, \delta_{2}\right)>0$ and assume $0<|x-a|<\delta$. For such x we have all of $h(x) \leq f(x) \leq g(x), L-\varepsilon<h(x)$ and $g(x)<L+\varepsilon$. Combine as in

$$
L-\varepsilon<h(x) \leq f(x) \leq g(x)<L+\varepsilon
$$

i.e. $|f(x)-L|<\varepsilon$.

Thus we have verified the definition of $\lim _{x \rightarrow a} f(x)=L$.
Note The Sandwich rule also holds if $x \rightarrow a$ is replaced throughout by $x \rightarrow a^{+}$ or a^{-}, or $x \rightarrow+\infty$ or $x \rightarrow-\infty$.

Example 1.2.11 Let

$$
f(x)=(x+1)^{2} \sin (10(x+1))-1 .
$$

Find $\lim _{x \rightarrow-1} f(x)$.

Solution Start from the simple fact that $-1 \leq \sin \theta \leq 1$ for all θ. Hence

$$
-1 \leq \sin (10(x+1)) \leq 1
$$

Thus

$$
-(x+1)^{2}-1 \leq(x+1)^{2} \sin (10(x+1))-1 \leq(x+1)^{2}-1 .
$$

By the product and sum rules for limits we have

$$
\lim _{x \rightarrow-1}\left(-(x+1)^{2}-1\right)=-\left(\lim _{x \rightarrow-1} x+1\right)^{2}-1=-1
$$

and

$$
\lim _{x \rightarrow-1}\left((x+1)^{2}-1\right)=-1
$$

So, by the Sandwich rule,

$$
\lim _{x \rightarrow-1}\left((x+1)^{2} \sin (10(x+1))-1\right)=-1 .
$$

Example 1.2.12 Prove that

$$
\lim _{\theta \rightarrow 0} \theta \sin \left(\frac{\pi}{\theta}\right)=0 .
$$

Solution Start from the fact that, for any $\alpha \in \mathbb{R}$ we have

$$
-|\alpha| \leq \alpha \leq|\alpha|
$$

In fact more is true, either $\alpha=|\alpha|$ or $\alpha=-|\alpha|$ but the inequality is all we require. Apply this with $\alpha=\theta \sin (\pi / \theta), \theta \neq 0$, to get

$$
-\left|\theta \sin \left(\frac{\pi}{\theta}\right)\right| \leq \theta \sin \left(\frac{\pi}{\theta}\right) \leq\left|\theta \sin \left(\frac{\pi}{\theta}\right)\right|
$$

Then since $|\sin (\pi / \theta)| \leq 1$ we deduce

$$
-|\theta| \leq \theta \sin \left(\frac{\pi}{\theta}\right) \leq|\theta|
$$

for $\theta \neq 0$. Finish off quoting the Sandwich Rule along with $\lim _{\theta \rightarrow 0}|\theta|=0$.

Perhaps this figure will show what is happening:

