
Example 1.2.6 For a power xn, n ∈ N we have, by the Product Rule,

lim
x→a

xn =
(

lim
x→a

x
)n

= an.

For any polynomial p(x) = cnx
n+ cn−1x

n−1+ ...+ c1x+ c0, we have, by the

Sum Rule,

lim
x→a

p(x) =
n

∑

i=0

ci lim
x→a

xi =
n

∑

i=0

cia
i = p(a) .

This says: The limit of a polynomial at a point is the value of the polynomial

at that point.

Example 1.2.7 A rational function is the quotient of polynomials, so r(x)
is a rational function if, and only if, it can be written as p(x)/q(x) for some

polynomials p(x) and q(x). Then

lim
x→a

r(x) = lim
x→a

p(x)

q(x)
=

limx→a p(x)

limx→a q(x)

by the quotient rule, provided limx→a q(x) = q(a) is non-zero.

Thus, since the limits of these polynomials equal their values at the limit

point,

lim
x→a

r(x) =
p(a)

q(a)
= r(a) .

This says The limit of a rational function at a point is the value of the rational

function at that point, provided that value is defined .

Example 1.2.8 As particular examples we deduce

lim
x→2

(x+ 3) = 2 + 3 = 5,

and

lim
x→2

(

x2 + 2x+ 2
)

= 4 + 4 + 2 = 10.

Then, since 5 6= 0, we can use the Quotient Rule to deduce,

lim
x→2

x2 + 2x+ 2

x+ 3
=

limx→2 (x
2 + 2x+ 2)

limx→2 (x+ 3)
=

10

5
= 2,

as has been proved earlier by verifying the ε− δ definition.
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Note 1 We can not use the Quotient Rule to calculate

lim
x→1

x2 − 1

x2 − x
.

This is because limx→1 q(x) = limx→1 (x
2 − x) = 0, and so the necessary con-

ditions of the Theorem 1.2.5 are not satisfied.

Note 2 The Rules for Limits also hold if x → a is replaced by either of the

one-sided limits x → a+, x → a− or limits at infinity x → +∞ or x → −∞.

It would be useful for the student to modify the proof I have given to show that

it holds in these cases.

Recalling limx→+∞ 1/x = 0, proved by verifying the definition, means
that by the Product Rule for limits at infinity

lim
x→+∞

1

xn
=

(

lim
x→+∞

1

x

)n

= 0,

for all n ≥ 1.

This simple result has applications as in the following.

Example 1.2.9

lim
x→+∞

4x2 + 2

2x2 + 4x
= 2.

Solution Divide top and bottom by the largest power of x, namely x2 to get

lim
x→+∞

4x2 + 2

2x2 + 4x
= lim

x→+∞

4 + 2/x2

2 + 4/x
=

limx→+∞ (4 + 2/x2)

limx→+∞ (2 + 4/x)
,

by the Quotient Rule, allowable since both limit top and bottom both exist
and the bottom one is non-zero. Thus

lim
x→+∞

4x2 + 2

2x2 + 4x
=

limx→+∞ (4 + 2/x2)

limx→+∞ (2 + 4/x)
=

4

2
= 2.

�

Note We cannot say

lim
x→+∞

4x2 + 2

2x2 + 4x
=

limx→+∞ (4x2 + 2)

limx→+∞ (2x2 + 4x)
,

because neither of the limits on the right hand side exist.
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Theorem 1.2.10 Sandwich Rule:

Suppose that f, g and h are three functions such that

h(x) ≤ f(x) ≤ g(x)

for all x in some deleted neighbourhood of a.

If limx→a h(x) = L and limx→a g(x) = L then limx→a f(x) = L.

Proof By the assumption in the Theorem there exists δ0 > 0 such that if
0 < |x− a| < δ0 then h(x) ≤ f(x) ≤ g(x).

Let ε > 0 be given.

From the definition of limx→a h(x) = L there exists δ1 > 0 such that

0 < |x− a| < δ1 =⇒ |h(x)− L| < ε

=⇒ L− ε < h(x) < L+ ε

=⇒ L− ε < h(x) .

From the definition of limx→a g(x) = L there exists δ2 > 0 such that

0 < |x− a| < δ2 =⇒ |g(x)− L| < ε

=⇒ L− ε < g(x) < L+ ε

=⇒ g(x) < L+ ε.

Let δ = min (δ0, δ1, δ2) > 0 and assume 0 < |x− a| < δ. For such x we
have all of h(x) ≤ f(x) ≤ g(x), L− ε < h(x) and g(x) < L+ ε. Combine as
in

L− ε < h(x) ≤ f(x) ≤ g(x) < L+ ε,

i.e. |f(x)− L| < ε.

Thus we have verified the definition of limx→a f(x) = L. �

Note The Sandwich rule also holds if x→ a is replaced throughout by x→ a+

or a−, or x→ +∞ or x→ −∞.

Example 1.2.11 Let

f(x) = (x+ 1)2 sin (10 (x+ 1))− 1.

Find limx→−1 f(x).
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Solution Start from the simple fact that −1 ≤ sin θ ≤ 1 for all θ. Hence

−1 ≤ sin (10 (x+ 1)) ≤ 1.

Thus

− (x+ 1)2 − 1 ≤ (x+ 1)2 sin (10 (x+ 1))− 1 ≤ (x+ 1)2 − 1.

By the product and sum rules for limits we have

lim
x→−1

(

− (x+ 1)2 − 1
)

= −

(

lim
x→−1

x+ 1

)2

− 1 = −1

and
lim
x→−1

(

(x+ 1)2 − 1
)

= −1.

So, by the Sandwich rule,

lim
x→−1

(

(x+ 1)2 sin (10 (x+ 1))− 1
)

= −1.

�
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Example 1.2.12 Prove that

lim
θ→0

θ sin
(π

θ

)

= 0.

x

y

Solution Start from the fact that, for any α ∈ R we have

− |α| ≤ α ≤ |α| .

In fact more is true, either α = |α| or α = − |α| but the inequality is all
we require. Apply this with α = θ sin (π/θ) , θ 6= 0, to get

−
∣

∣

∣
θ sin

(π

θ

)
∣

∣

∣
≤ θ sin

(π

θ

)

≤
∣

∣

∣
θ sin

(π

θ

)
∣

∣

∣
.

Then since |sin (π/θ)| ≤ 1 we deduce

− |θ| ≤ θ sin
(π

θ

)

≤ |θ| ,

for θ 6= 0. Finish off quoting the Sandwich Rule along with limθ→0 |θ| = 0.
�
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Perhaps this figure will show what is happening:

x

y
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